
Citation: Laojun, S.; Changbunjong,

T.; Chaiphongpachara, T. Evaluation

of Modern Techniques for Species

Identification of Lutzia Mosquitoes

(Diptera: Culicidae) in Thailand:

Geometric Morphometrics and DNA

Barcoding. Insects 2023, 14, 78.

https://doi.org/10.3390

/insects14010078

Academic Editor: Alon Silberbush

Received: 28 November 2022

Revised: 6 January 2023

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

insects

Article

Evaluation of Modern Techniques for Species Identification of
Lutzia Mosquitoes (Diptera: Culicidae) in Thailand: Geometric
Morphometrics and DNA Barcoding
Sedthapong Laojun 1, Tanasak Changbunjong 2,3 and Tanawat Chaiphongpachara 1,*

1 Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha
Rajabhat University, Samut Songkhram 75000, Thailand

2 Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University,
Nakhon Pathom 73170, Thailand

3 The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE),
Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand

* Correspondence: tanawat.ch@ssru.ac.th

Simple Summary: There are four species of Lutzia mosquitoes in Thailand, including Lt. chiangmaiensis,
Lt. fuscana, Lt. halifaxii, and Lt. vorax. However, it is difficult to identify damaged specimens when
some of their morphological character is missing. Thus, we evaluated the efficacy of the geometric
morphometric (GM) approach and DNA barcoding for the identification of four Lutzia species. Our
results showed that DNA barcoding is poorly effective in identifying Lt. fuscana and Lt. halifaxii based
on their low interspecific genetic differences. On the other hand, the GM approach based on wing
shape analyses successfully identified the four Lutzia species in Thailand.

Abstract: There are four species of Lutzia mosquitoes in Thailand, including Lutzia chiangmaiensis,
Lt. fuscana, Lt. halifaxii, and Lt. vorax. The accurate species identification of adult Lutzia mosquitoes
based on morphological features requires many body parts, including the abdominal terga and
wing. However, species identification is difficult in the case of damaged specimens when some of
their morphological character is missing due to transit or gathering in the field. Thus, we evaluated
the efficacy of the landmark-based geometric morphometric (GM) approach for the discrimination
of Lutzia species in Thailand. In addition, DNA barcoding was also used in parallel with the GM
approach to identify the species. Larvae of Lutzia were collected, raised into adults, and identified
based on their morphological characteristics. The validated reclassification test results clearly demon-
strated that wing shape resulted in a high level of success in identification (correct identifications
ranged from 92.50% to 100%); however, based on the DNA barcoding analyses, our results showed
that it was poorly effective in identifying Lt. fuscana and Lt. halifaxii based on an overlap between
the intraspecific and interspecific divergence. Moreover, our survey results provide updates on
the distribution of Lt. chiangmaiensis and Lt. vorax in Thailand. This research will help medical
entomologists more efficiently identify mosquitoes in the genus Lutzia, resulting in more effective
mosquito control and surveillance.

Keywords: mosquito; Lutzia; geometric morphometrics; DNA barcoding; Thailand

1. Introduction

Lutzia are large mosquitoes that belong to the order Diptera, subfamily Culicidae, tribe
Culicini. This genus consists of nine formally recognized species divided into three subgen-
era, including Insulalutzia (one species: Lt. shinonagai), Lutzia (two species: Lt. allostigma
and Lt. bigoti), and Metalutzia (six species: Lt. agranensis, Lt. chiangmaiensi, Lt. fuscana,
Lt. halifaxii, Lt. tigripes, and Lt. vorax) [1]. Recently, phylogenetic analyses based on DNA
sequence data on the first and second internal transcribed spacer (ITS-1 and ITS-2) regions
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of nuclear ribosomal DNA (rDNA) and the mitochondrial cytochrome c oxidase I (mtDNA-
COI) revealed that the Lutzia clade is classified as a species of the subgenera of Culex [2,3].
However, Lutzia is currently classified as a distinct genus from the genus Culex based on its
fundamentally distinctive morphological and biological identity [1].

Lutzia shinonagai, the only species of the subgenus Insulalutzia, is exclusively found on
Ogasawara Island, Japan, whereas Lt. allostigma and Lt. bigoti, two species of the subgenus
Lutzia, are distributed in the Neotropical region. Some species of the subgenus Metalutzia
have limited distribution: Lt. agranensis is reported only in India; Lt. chiangmaiensis is
reported only in northern Thailand. Other species of this subgenus are widely distributed:
Lt. fuscana and Lt. halifaxii are distributed in the Oriental, Australian, and eastern Palearctic
regions; Lt. tigripes is distributed throughout the Afrotropical region; and Lt. vorax is
distributed in the Oriental and Australian regions [1,4].

Mosquito species in the genus Lutzia have not been reported to carry pathogens of
human diseases because female Lutzia mosquitoes feed mainly on the blood of mammals
and birds and seldom attack humans [5]. However, Lutzia mosquitoes serve as natural
biological controls on mosquito vectors, making them inevitably important for public
health. Lutzia larvae are voracious predators that feed primarily on the larvae of other
mosquito species. Surendran et al. [6] assessed the effectiveness of Lutzia larvae as a
predator on mosquito vectors in Sri Lanka and found that they were most effective at
hunting Aedes aegypti larvae. The immature stages of Lutzia are typically found in a wide
variety of freshwater habitats, which are similar to those occupied by Culex species, and
have been found in wheel ruts and barrels, which are similar to those occupied by Aedes
species, and are most probably related to their desired prey [1].

There are four different species of Lutzia mosquitoes in Thailand, including
Lt. chiangmaiensis, Lt. fuscana, Lt. halifaxii, and Lt. vorax [4,7]. Rattanarithikul et al. [5]
reported that Lt. fuscana and Lt. halifaxii are distributed across Thailand, whereas Lt. vorax
are only distributed in the northern, western, and central regions. Lately, Somboon and
Harbach [7] reported that Lt. chiangmaiensis is distributed in northern Thailand, while
its presence in other regions remains unconfirmed. According to the gold standard, the
species identification of Lutzia mosquitoes in their adult stages based on their morpho-
logical characters requires multiple body parts, including the abdominal terga and wing,
to aid in decision making [5,7]. However, it is difficult to identify them in the case of
damaged specimens when some of their morphological character is missing due to transit
or gathering in the field [8]. Presently, many modern techniques have emerged to assist
medical entomologists in identifying specimens, such as GMs and DNA barcoding [9–11].

The geometric morphometric (GM) technique is a useful modern approach to investi-
gate differences in wing shape for species classification when some species of mosquitoes
are difficult to identify by standard taxonomic methods [12–14]. In addition, this approach
has been used to evaluate the morphological changes caused by environmental conditions
in insect vector populations [15–22]. Previously, this technique was applied to identify cryp-
tic species of the Anopheles dirus and the An. barbirostris complexes in Thailand, and it was
found that GM had a high level of discriminating efficiency in many member species [23,24].
In addition, this modern technique was also proven to be effective with several insects
of medical and veterinary significance [25–29]. However, the success of this technique
is not guaranteed for all mosquito species, which depends on sufficient differences in
geometrical shapes between species [30]. Phanitchakun et al. (2019)’s earlier study revealed
that four Lutzia species in Thailand had different wing vein structures, especially between
Lt. chiangmaiensis and Lt. vorax [4]. Therefore, it is possible that the GM technique could
help identify member species in the genus Lutzia in Thailand. Ruangsittichai et al. [31]
explained that the application of GM techniques to particular species for the first time
should be supported by molecular biology techniques. DNA barcoding is a recognized
effective choice in supporting and confirming the results of GM [31–33]. In addition, DNA
barcoding sequences of several mosquito species were recently collected across Thailand,
which could be used to better confirm the results of GM [3].
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Therefore, in the present study, we aimed to evaluate the efficacy of the landmark-
based GM approach for the identification of mosquito species within the genus Lutzia in
Thailand: Lt. chiangmaiensis, Lt. fuscana, Lt. halifaxii, and Lt. vorax. In addition, DNA
barcoding based on a COI sequence analysis was also used in parallel with the landmark-
based GM approach to identify four Lutzia species. The results of this study can provide a
novel method to more efficiently identify mosquitoes in the genus Lutzia.

2. Materials and Methods
2.1. Mosquito Collection

All Lutzia larvae were collected from various breeding sites in six provinces of Thailand:
Trat (eastern Thailand; 12◦08′27.9′′ N, 102◦16′35.1′′ E and 11◦38′16.3′′ N, 102◦33′23.0′′ E),
Chachoengsao (eastern Thailand; 13◦27′14.′′ N, 101◦46′25.5′′E), Ubon Ratchathani (north-
eastern Thailand; 14◦34′38.6′′ N, 105◦21′41.2′′ E), Ranong (southern Thailand; 9◦50′28.5′′ N,
98◦27′15.6′′ E and 9◦43′47.4′′ N, 98◦23′56.1′′ E), Kanchanaburi (western Thailand;
14◦06′02.5′′ N, 99◦00′01.1′′ E), and Ratchaburi (western Thailand; 13◦22′34.0′′ N, 99◦16′26.0′′ E)
between June 2021 and April 2022 (Figure 1).
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Figure 1. Locations of the sample collection sites (a) and Lutzia larval collection method used in this
study (b). Lutzia mosquito samples were gathered from six provinces in four geographical regions of
Thailand, including Trat (1), Chachoengsao (2) in the eastern region (green), Ubon Ratchathani (3) in
the northeastern (red), Ranong (4) in the southern region (blue), Kanchanaburi (5), and Ratchaburi
(6) in the western region (yellow). This map was made available by the USGS National Map Viewer
(public domain): http://viewer.nationalmap.gov/viewer/, accessed on 1 October 2022.

The mosquito larvae were transported to the College of Allied Health Sciences at the
Suan Sunandha Rajabhat University, Samut Songkhram, Thailand, where they were raised

http://viewer.nationalmap.gov/viewer/
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in white plastic trays (20 larvae per tray) in the biology laboratory at 25–28 ◦C, a 12–12 h
light–dark cycle, and 50–60% relative humidity until they reached the pupal stage. Third-
stage Aedes larvae from the field were used as food for the Lutzia larvae, with each tray
receiving 50 larvae daily. When the larvae became pupae, they were relocated to a small
cup containing clean water and placed in 30 × 30 × 30 cm cages to facilitate the collection
of adult mosquitoes. Four mature female Lutzia species (Lt. chiangmaiensis, Lt. fuscana,
Lt. halifaxii, and Lt. vorax; Figure 2) were identified based on their physical characteristics
under a stereomicroscope using illustrated taxonomic keys to the mosquitoes of Thailand
after being euthanized in the freezer at –20 ◦C [5,7,34].
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Figure 2. Four adult female Lutzia species used in the study: Lt. chiangmaiensis, Lt. fuscana, Lt. halifaxii,
and Lt. vorax. Lutzia fuscana, Lt. halifaxii, and Lt. vorax have different abdominal terga characteristics:
Lt. fuscana has entirely pale light-yellow scales on the terga V–VIII and entirely dark scales or narrow
apical pale bands on the terga II–IV; Lt. halifaxii has fully covered dark scales on the abdominal terga
and occasional lateral pale patches on the last few segments; Lt. vorax has apical pale stripes that are
rather wide and around the same width; and Lt. chiangmaiensis has abdominal terga characteristics
like those of Lt. vorax but with different wing vein positions.

2.2. Geometric Morphometrics

After the morphological identification, the right wings of the four Lutzia species were
cut off from their thorax by fine forceps and mounted using Hoyer’s mounting medium
on glass microscope slides with coverslips. A digital camera (Nikon DS-Fi3, Tokyo, Japan)
linked to a Nikon SMZ 800 N stereomicroscope (Nikon Corp., Tokyo, Japan) was used to
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take photos of all the mounted wing slides of the Lutzia samples, adding a 1 mm scale bar
to each wing image.

Eighteen landmarks on the wing vein structure of the Lutzia mosquitoes were identified
and digitized for the GM analyses (Figure 3). This study’s landmark placements are based
on earlier research that successfully identified certain mosquito species [23,24,35].
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Figure 3. Eighteen landmarks on the wing vein structure of Lutzia mosquito for GM analyses in
this study.

In order to evaluate the accuracy of landmark plotting in a wing image set, also known
as a repeatability test, 10 images from each Lutzia species were chosen at random and
re-digitized by the same individual. The Procrustes analysis was used to estimate shape
repeatability [36]. In addition, the linear determination coefficient was calculated after
regressing the wing size on the wing shape, in order to assess allometry, which is the
relationship between wing size and wing shape [30].

Wing shape variables were computed by the Generalized Procrustes Analysis. The
shape matrix was held in Euclidean space to construct partial warps, wherein the principal
components of the partial warps were used as the final shape variables [37]. After that, the
final shape variables were used for various statistical calculations. The discriminant analysis
was used to examine the group separation among the Lutzia species, which is represented
as a discriminant space (also called a factor map), and to compute the Mahalanobis distance
for assessing shape divergence between the Lutzia species.

The significant difference in wing shape between four Lutzia species based on the pair-
wise Mahalanobis distance was performed using a non-parametric test (1000 permutations)
with Bonferroni correction at p < 0.05.

To evaluate wing shape similarity between the four Lutzia species, a hierarchical
clustering tree was constructed based on Mahalanobis distances. Finally, Mahalanobis-
based validated (cross-checked) classification was used to evaluate the efficacy of species
identification based on wing shape variables, with each sample sequentially removed from
the total sample and assigned to the closest group, performing this for all mosquito samples.

2.3. DNA Extraction, PCR Amplification, and DNA Sequencing

Ten Lutzia mosquitoes were randomly sampled per species (a total of 40 samples)
for DNA extraction. The total genomic DNA of the mosquitoes was extracted from 4 to
6 legs of each adult Lutzia specimen, using FavorPrep™ Mini Kits (Favorgen Biotech, Ping-
Tung, Taiwan), following the manufacturer’s guidelines. Both universal barcode primers,
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including forward (5′-GGA TTT GGA AAT TGA TTA GTT CCT T-3′) and reverse (5′-AAA
AAT TTT AAT TCC AGT TGG AAC AGC-3′) primers [38], were used to amplify a 709-bp
fragment of COI; the polymerase chain reaction (PCR) reaction mixture and PCR conditions
were as described in a previous study [3]. Negative (water without DNA) and positive
controls (DNA of Lutzia mosquitoes) were included in each PCR. All PCR products were
examined through electrophoresis using 1.5% agarose gels and Tris-borate-EDTA (TBE)
buffer, as well as staining with the Midori Green DNA stain (Nippon Gene, Tokyo, Japan),
and visualized via the ImageQuant LAS 500 imager (GE Healthcare Japan Corp., Tokyo,
Japan). After that, quality PCR products were purified and sequenced, in both forward and
reverse, by SolGent, Inc. (Daejeon, Republic of Korea).

2.4. Software

For the GM analyses, the online XYOM version 2 was used in this study [39]. While for
the molecular analyses, the trace files of the COI sequences were examined and manually
edited using the BioEdit software [40]. Both forward and reverse sequences were used
to create a consensus sequence using the BioEdit software. Our consensus sequences
were compared to DNA sequences available in the GenBank database of the National
Center for Biotechnology Information website (https://blast.ncbi.nlm.nih.gov/Blast.cgi/,
accessed on 5 October 2022) and the Barcode of Life Database (BOLD) available at https:
//www.boldsystems.org/index.php/IDS_OpenIdEngine, accessed on 5 October 2022 to
identify the Lutzia species.

The multiple sequence alignment of the COI sequences of the Lutzia mosquitoes were
performed using Clustal W software [41] in MEGA X [42]. The nucleotide composition
and genetic divergences (within and between the Lutzia species) were calculated by the
Kimura-2 parameter (K2P) model via MEGA X [42]. A neighbor-joining (NJ) tree based on
the K2P distances with 1000 bootstraps was constructed using MEGA X [42] to examine the
genetic relationship between the Lutzia species.

3. Results
3.1. Lutzia Species

In this study, 179 individuals of the four Lutzia species were gathered. The morpholog-
ical identification of the Lutzia specimens grouped them into four species: Lt. chiangmaiensis,
Lt. fuscana, Lt. halifaxii, and Lt. vorax (Table 1). Most of the collected Lutzia samples were
identified as Lt. fuscana (58 individuals, 32.40%), followed by Lt. halifaxii (47 individuals,
26.26%), Lt. chiangmaiensis (45 individuals, 25.14%), and Lt. vorax (29 individuals, 16.20%),
respectively. Based on our survey, all four Lutzia species were collected in Trat, eastern
Thailand, whereas in Ranong, southern Thailand, only Lt. halifaxii was found.

Table 1. Number of Lutzia mosquitoes collected in this study.

Province
Total Number of Lutzia Mosquitoes Collected

Lt. chiangmaiensis Lt. fuscana Lt. halifaxii Lt. vorax

Eastern Thailand
Trat 8 13 32 6
Chachoengsao 5 30 – 4

Northeastern Thailand
Ubon Ratchathani 5 – – 4

Southern Thailand
Ranong – – 15 –

Western Thailand
Kanchanaburi 15 – – 5
Ratchaburi 12 15 – 10

Total 45 58 47 29

https://blast.ncbi.nlm.nih.gov/Blast.cgi/
https://www.boldsystems.org/index.php/IDS_OpenIdEngine
https://www.boldsystems.org/index.php/IDS_OpenIdEngine
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3.2. Wing Geometric Morphometrics

A total of 157 undamaged Lutzia wings were utilized for the GM analyses: 40 wings of
Lt. chiangmaiensis, 50 wings of Lt. fuscana, 42 wings of Lt. halifaxii, and 25 wings of Lt. vorax.
Assessing the repeatability of landmark digitizing on wing image sets revealed a high
degree of shape repeatability based on the Procrustes analysis (repeatability percentage
score = 96%; measurement error percentage score = 4%). The repeatability result indicated
that landmark digitization in the tested wing image set showed a high accuracy rate, while
investigating the allometry revealed a significant relationship between the wing size and
wing shape of the Lutzia mosquitoes. The linear determination coefficient after regression
showed a negative correlation between size and shape. The effect of wing size (wing
centroid size) on wing shape (the discriminant factor) based on the linear determination
coefficient was 22% (r2) (p < 0.05) (Figure 4).
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Figure 4. Allometric relationship between the wing centroid size (CS) and wing shape of Lutzia
mosquito specimens. The linear regression prediction is shown by the orange dotted line; the y-axis
shows the wing shape, and the x-axis shows the wing CS.

The superposition of the average wing shapes revealed shape variation differences
among the four Lutzia species, especially at landmark positions 12, 13, 17, and 18 (Figure 5).
Investigating the wing shape based on the final shape variables by discriminant analysis
displayed that the Lt. vorax group was clearly separated from the other Lutzia groups,
whereas some specimens of the Lt. chiangmaiensis, Lt. fuscana, and Lt. halifaxii groups
overlapped with each other (Figure 6). Pairwise Mahalanobis distances, which were used
to investigate the wing shape differences between the species, were significantly different
in all Lutzia species pairs (p < 0.05, Table 2). Wing shape similarity between the four
Lutzia species was visualized by a hierarchical clustering tree based on the Mahalanobis
distances (Figure 7).

The efficacy of the landmark-based GM approach based on wing shape in identifying
the Lutzia species was evaluated by a cross-validated reclassification test, which is shown
in Table 3. The results of the reclassification test clearly indicated that wing shape yielded a
high level of successful identification (correct identifications ranged from 92.50% to 100%).
Lutzia vorax had the highest correct classification score (100%), while Lt. chiangmaiensis had
the least correct classification score (92.50%).
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Figure 6. Discriminant space produced by the discriminant analysis of the wing shape of
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Table 2. Pairwise Mahalanobis distance and significant differences in the wing shape of
Lt. chiangmaiensis, Lt. fuscana, Lt. halifaxii, and Lt. vorax.

Lutzia Species
Pairwise Mahalanobis Distance

Lt. chiangmaiensis Lt. fuscana Lt. halifaxii Lt. vorax

Lt. chiangmaiensis 0.00
Lt. fuscana 4.55 * 0.00
Lt. halifaxii 5.34 * 4.05 * 0.00

Lt. vorax 8.45 * 10.25 * 9.99 * 0.00
Comparing the wing shape between species, superscript asterisks after pairwise Mahalanobis distance values
indicate statistically significant differences between Lutzia species at p-value < 0.05.

3.3. Barcode Sequences

Using the GenBank database and the BOLD system for preliminary species identifi-
cation, the COI sequences of Lt. chiangmaiensis and Lt. vorax obtained in our study were
correctly identified (>99% similarity), while a more than 99% similarity overlap between
Lt. fuscana and Lt. halifaxii was found from our sequence comparison with available species
sequences in the GenBank database and the BOLD system.



Insects 2023, 14, 78 9 of 15Insects 2023, 14, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 7. Hierarchical clustering tree based on the Mahalanobis distances between average group 

shapes showing wing shape similarity among Lutzia species. The percentages of bootstrap values 

based on 1000 replicates are shown above the branches. 

The efficacy of the landmark-based GM approach based on wing shape in identifying 

the Lutzia species was evaluated by a cross-validated reclassification test, which is shown 

in Table 3. The results of the reclassification test clearly indicated that wing shape yielded 

a high level of successful identification (correct identifications ranged from 92.50% to 

100%). Lutzia vorax had the highest correct classification score (100%), while Lt. 

chiangmaiensis had the least correct classification score (92.50%).  

Table 3. Identification error and percentage of correct classification based on the wing shape of Lt. 

chiangmaiensis, Lt. fuscana, Lt. halifaxii, and Lt. vorax calculated by a cross-validated reclassification 

test. 

Lutzia Species 

Classified as  
Total  

(Individuals)  

Correct Identi-

fications (%)  
Lt. chiangmaiensis 

(Individuals)   

Lt. fuscana 

(Individuals)   

Lt. halifaxii 

(Individuals)   

Lt. vorax 

(Individuals)   

Lt. chiangmaiensis 37 1 2 0 40 92.50% 

Lt. fuscana 0 47 3 0 50 94% 

Lt. halifaxii 1 2 39 0 42 92.86% 

Lt. vorax 0 0 0 25 25 100% 

3.3. Barcode Sequences 

Using the GenBank database and the BOLD system for preliminary species identifi-

cation, the COI sequences of Lt. chiangmaiensis and Lt. vorax obtained in our study were 

correctly identified (>99% similarity), while a more than 99% similarity overlap between 

Lt. fuscana and Lt. halifaxii was found from our sequence comparison with available spe-

cies sequences in the GenBank database and the BOLD system.  

The average nucleotide compositions of the entire dataset of the 40 Lutzia mosquito 

sequences were A (29.9%), T (38.8%), G (15.4%), and C (15.9%). The absence of stop codons 

in the amino acid translations indicated that all sequences were functioning protein-cod-

ing genes and not pseudogenes.  
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Table 3. Identification error and percentage of correct classification based on the wing shape of
Lt. chiangmaiensis, Lt. fuscana, Lt. halifaxii, and Lt. vorax calculated by a cross-validated reclassification test.

Lutzia Species
Classified as

Total
(Individuals)

Correct
Identifications (%)Lt. chiangmaiensis

(Individuals)
Lt. fuscana

(Individuals)
Lt. halifaxii

(Individuals)
Lt. vorax

(Individuals)

Lt. chiangmaiensis 37 1 2 0 40 92.50%
Lt. fuscana 0 47 3 0 50 94%
Lt. halifaxii 1 2 39 0 42 92.86%

Lt. vorax 0 0 0 25 25 100%

The average nucleotide compositions of the entire dataset of the 40 Lutzia mosquito
sequences were A (29.9%), T (38.8%), G (15.4%), and C (15.9%). The absence of stop codons
in the amino acid translations indicated that all sequences were functioning protein-coding
genes and not pseudogenes.

The intraspecific genetic divergence (within species) based on the K2P model of the
Lutzia species varied from 0.00% to 1.43%, and the average intraspecific divergence was
0.48% (Table 4). The highest average intraspecific divergence was observed in Lt. vorax
(0.76%), followed by Lt. fuscana (0.60%), Lt. halifaxii (0.35%), and Lt. chiangmaiensis (0.19%),
respectively. The interspecific genetic divergence (between species) of the Lutzia species
varied from 0.00% to 5.60%, and the average interspecific divergence was 3.14%. The highest
average interspecific divergence was observed between Lt. vorax and Lt. chiangmaiensis
(5.11%), followed by that between Lt. vorax and Lt. fuscana (4.96%), and between Lt. vorax
and Lt. halifaxii (4.74%). Meanwhile, the lowest average interspecific divergence was
observed between Lt. fuscana and Lt. halifaxii (0.48%). The results of the K2P distances
showed the overlap between intra- and interspecific divergence between Lt. halifaxii and
Lt. fuscana.
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Table 4. Average percentage intra- and interspecific K2P distances of four Lutzia species based on the
COI barcoding sequences calculated using the Kimura 2-parameter distance algorithm.

Lutzia Species
Average Percentage Genetic Divergences (Min–Max)

Lt. chiangmaiensis Lt. fuscana Lt. halifaxii Lt. vorax

Lt. chiangmaiensis 0.19%
(0.00–0.71)

Lt. fuscana 1.86%
(1.43–2.45)

0.60%
(0.00–1.14)

Lt. halifaxii 1.70%
(1.57–2.16)

0.48%
(0.00–0.85)

0.35%
(0.00–0.57)

Lt. vorax 5.11%
(4.81–5.44)

4.96%
(4.22–5.60)

4.74%
(4.38–5.29)

0.76%
(0.00–1.43)

The red values are intraspecific genetic distances, while the black values are the interspecific genetic distances.

A neighbor-joining phylogenetic analysis revealed three distinct Lutzia clusters, in-
cluding the Lt. chiangmaiensis cluster (bootstrap value = 96%), the Lt. fuscana and Lt. halifaxii
cluster (bootstrap value = 88%), and the Lt. vorax cluster (bootstrap value = 100%) (Figure 8).
This result strongly visualized that Lt. fuscana and Lt. halifaxii samples were grouped into
the same cluster based on similarity with the sequences of both mosquito species.Insects 2023, 14, x FOR PEER REVIEW 11 of 16 
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Figure 8. Neighbor-joining (NJ) phylogenetic tree based on Kimura 2-parameter (K2P) distances
derived from the 40 COI barcoding sequences of four Lutzia species. Eight sequences from the
GenBank database (accession numbers OL743067 and OL743071 for Lt. chiangmaiensis; OL743060
and OL743063 for Lt. fuscana; MK271008 and MK271009 for Lt. halifaxii; OL743058 and OL743059
for Lt. vorax) were used as reference species sequences (red stars). Culex gelidus (accession number:
OL743067) was used as an outgroup. The bootstrap values (1000 replicates) below 50% are not shown.
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The COI barcode sequence data of the four obtained Lutzia species were submit-
ted to the GenBank database under the following accession numbers: Lt. chiangmaiensis
(OP783906–OP783915), Lt. fuscana (OP783916–OP783925), Lt. halifaxii (OP783926–OP783935),
and Lt. vorax (OP783936–OP783945).

4. Discussion

In the present study, we evaluated the efficacy of the landmark-based GM approach
coupled with DNA barcoding based on COI sequence analysis to identify four Lutzia
species in Thailand: Lt. chiangmaiensis, Lt. fuscana, Lt. halifaxii, and Lt. vorax. A total of
179 Lutzia mosquitoes, consisting of 45 individuals of Lt. chiangmaiensis, 58 individuals of
Lt. fuscana, 47 individuals of Lt. halifaxii, and 29 individuals of Lt. vorax, were collected from
six provinces of Thailand: Trat, Chachoengsao, Ubon Ratchathani, Ranong, Kanchanaburi,
and Ratchaburi.

Rattanarithikul et al. [5] reported that Lt. fuscana and Lt. halifaxii are distributed
throughout Thailand, whereas the distribution of Lt. vorax in the southern, northeast-
ern, and eastern regions is unclear. Our survey revealed the presence of Lt. vorax in the
northeastern (Ubon Ratchathani) and eastern (Trat and Chachoengsao) regions of Thailand.
Furthermore, Lt. chiangmaiensis is the newest Lutzia species in Thailand, which was discov-
ered in northern Thailand by Somboon and Harbach [7]. This species was reported only in
northern Thailand. This study reported the existence of Lt. chiangmaiensis for the first time
in other regions of Thailand, including the eastern (Trat and Chachoengsao), northeastern
(Ubon Ratchathani), and western (Kanchanaburi and Ratchaburi) regions.

At present, the standard morphological method for identifying mosquito species
is recognized as error-prone and requires practitioners with extensive experience [43].
Nonetheless, this method is highly accepted when supported and confirmed by effective
alternative or complementary techniques [8].

Our findings indicated that the landmark-based GM approach based on wing shape
analyses was very successful in identifying Lutzia species in Thailand, which is supported by
a high percentage of correct classification (94.27% of total performance). Correctly classified
specimens of Lt. chiangmaiensis (92.50%), Lt. fuscana (94%), Lt. halifaxii (92.86%), and
Lt. vorax (100%) yielded a high percentage of species identification success. The observation
of the wireframe graph based on the superposition of the average wing shape revealed
differences in wing structure between the four Lutzia species. According to previous
research, the wing vein pattern of many mosquito species is a species-specific identity that
may be detected by the landmark-based GM for identification [10,13,44–46]. The results of
the discriminant analysis, pairwise Mahalanobis distance, and 100% identification success
based on the cross-validated reclassification indicated that the wing shape of Lt. vorax
differed markedly from that of the other Lutzia species. GM’s results are consistent with
previous studies of Phanitchakun et al. [4] and Somboon and Harbach [7], reporting that
the wing of Lt. vorax has the mediocubital crossvein situated distal to the radiomedial
crossvein, unlike other Lutzia species.

In this study, wing size was not analyzed for the identification of the four Lutzia
species. Almost all previous studies showed a failure to identify mosquito species by the
landmark-based GM approach based on wing size analyses. The wing size of mosquitoes
is not a conserved trait and will fluctuate from generation to generation according to
density-dependent and independent selective pressures present during the immature stage
of development [30,31]. In addition, Lorenz et al. [30] explained that the wing size is more
sensitive to a changing environment and frequently overlaps among species, which is
difficult to interpret.

An examination of the allometry indicated the relation between the wing size and wing
shape of the Lutzia mosquito samples. The result of linear regression for allometric estima-
tion showed a negative correlation (also called an inverse correlation), which means size
decreases as shape difference increases, or size increases as shape difference decreases (one
increases as the other decreases). This relationship pattern of Lutzia mosquitoes is similar
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to those found in studies that examined three cryptic species of the An. barbirostris com-
plex in Thailand [24]. Nevertheless, this correlation has no effect on species identification
(inter-species investigations) based on the wing shape analyses [47].

Furthermore, the limitation of our study is that larvae were collected and reared into
adults for species investigations. It is difficult for adult Lutzia mosquitoes to be collected
from mosquito traps and using the human landing catch method, as these methods do not
attract them [5]. The preferred method of collecting specimens of mosquitoes in the genus
Lutzia is the larval collection in breeding sites such as rice fields, small ponds, roadside
ditches, shallow wells, bamboo cups, small puddles, water jars, and wheel tracks [4,5].
Therefore, the GM results of this study may differ from adult specimens in nature due to
the influence of factors acquired during the development of the immature stage. However,
environmental influences during the development of the immature stage of mosquitoes tend
to affect size more than shape in the adult stage [31], while wing shape is relatively stable
due to being influenced by the genetic background [30]. In this study, the identification
of Lutzia species based on GM offers good results for the wing shape analysis and may
be a potential alternative for future applications in the field. For more effective results in
applications, we recommend that GM performance be tested on Lutzia specimens in new
study areas to avoid errors from wing shape variations in different sites.

This is the first application of the landmark-based GM approach to identify mosquito
species in the genus Lutzia. Thus, DNA barcoding based on the COI sequence analysis
was used to identify Lutzia species coupled with the GM approach. These genetic results
indicated that COI barcoding could distinguish only two of the four Lutzia species, namely,
Lt. chiangmaiensis and Lt. vorax, as supported by the barcoding gap and the NJ phylogenetic
analysis. Due to their low interspecific differences, it is impossible to distinguish between
Lt. fuscana and Lt. halifaxi. The barcoding gap is a hiatus of difference between the
greatest intraspecific genetic distance and the smallest interspecific distance, which is very
important in determining the success of DNA barcoding [3]. Our assessment of genetic
divergences revealed that this gap was not present between Lt. fuscana and Lt. halifaxii,
indicating that the DNA barcoding method could not discriminate between the two species.
This result is consistent with the investigation of Phanitchakun et al. [4], which found
that Lt. fuscana and Lt. halifaxii were not clearly distinct in COI and COII sequences. We
also found that Lt. chiangmaiensis was genetically more closely related to Lt. fuscana and
Lt. halifaxii, with low genetic differences between species groups (1.86% and 1.70% average
interspecific genetic divergences, respectively). The results of genetic divergences based on
the K2P model were consistent with the result of our phylogenetic tree.

To confirm that the failure of DNA barcoding to identify Lt. fuscana and Lt. halifaxii was
not attributable to faulty morphological identification, we compared all of our sequence
samples to those Lutzia sequences available in public databases. The comparison results
indicated that almost all overlap between Lt. fuscana and Lt. halifaxii in the database
was observed. Therefore, the findings of this research concluded that DNA barcoding is
not an effective approach for differentiating Lutzia species in Thailand. Recently, DNA
barcoding was applied to aid mosquito identification in Thailand and found that although
this technique has high efficiency, some mosquitoes are unable to identify the exact species,
such as Anopheles dirus and An. baimaii [23].

5. Conclusions

In this study, we evaluated the efficacy of modern techniques, including the landmark-
based GM approach and DNA barcoding, to support the standard morphological method
for the identification of Lutzia species in Thailand. Our results showed that DNA barcoding
was poorly effective in identifying Lt. fuscana and Lt. halifaxii based on a lack of barcoding
gap. In contrast, the GM approach based on wing shape analyses successfully identified
four Lutzia species in Thailand. Therefore, GM can help medical entomologists to identify
their species in the field. Compared to molecular biology techniques, the GM approach is
less expensive and does not require advanced scientific equipment. However, it is difficult
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to prepare wing slides for this approach, despite the rapid speed of analysis. In addition,
our survey results update the distribution of Lt. chiangmaiensis and Lt. vorax in Thailand.
This research will help medical entomologists to more efficiently identify mosquitoes in the
genus Lutzia, resulting in more effective mosquito control and surveillance.
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