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Abstract Phytochemical investigation of the stem bark of
Xylopia pierrei Hance led to the isolation of one triterpene,
polycarpol (1), three heptenes, (7R)-acetylmelodorinol (2),
(7R)-melodorinol (3), and melodienone (8), and four fla-
vonoids, pinocembrin (4), isochamanetin (5), chrysin (6),
and dichamanetin (7). All compounds were isolated for the
first time from this plant species. The structures of the
isolated compounds were characterized by spectroscopic
techniques and by comparison of the spectroscopic data
with the literature values and the stereochemistry at the
asymmetric carbon was determined by the modified
Mosher’s method. Among them, compound 2 displayed
potent cytotoxic activity against human small cell lung
cancer (NCI-H187) cells with an IC50 value of 6.66 μM and
it was 2.3-fold higher than that of the reference anticancer
drug, ellipticine. In addition, compound 2 was also eval-
uated against the non-cancerous Vero cells and showed high
selectivity index of 8.89, which is 59-fold greater than that
of ellipticine. The findings suggest that compound 2 should

be further developed as a potential lead molecule for
anticancer drug development.
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Introduction

The genus Xylopia (Annonaceae) comprises about
160 species with occurrence in South and Central America,
Africa, and Asia. Approximately five species of Xylopia
were identified in Thailand (Smitinand 2014). Xylopia
species are rich source of isoquinoline and
tetrahydroberberine-type alkaloids (Nishiyama et al. 2004,
2006, 2010), sequiterpenes (Martins et al. 1998; Moreira
et al. 2003, 2005) and diterpenes (Andrade et al. 2004,
Tavares et al. 2006). In particular, some species contains
dimeric quaianes (Kamperdick et al. 2001, 2003) and
dimeric diterpenes (Martins et al. 1999; Moreira et al.
2006). Some of these constituents possess interesting bio-
logical activities including antinociceptive (Nishiyama et al.
2010), antifungal (Moreira et al. 2003), and antimicrobial
activities (Asekun and Adeniyi 2004). To our knowledge,
there have been no reports on phytochemical study and
biological activity of Xylopia pierrei (X. pierrei). In our
preliminary investigation on the bioactivities of the stem
bark of X. pierrei, we found that the crude n-hexane and
EtOAc extracts showed significant cytotoxic activity against
human small cell lung cancer (NCI-H187) cells. We herein
report the details on the isolation, structure elucidation and
evaluation of anti-NCI-H187 activity of the isolated
compounds.
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Materials and methods

General experimental procedures

Melting points were determined with an Electrothermal
melting point apparatus and are uncorrected. Optical rota-
tions were measured on a JASCO-1020 polarimeter. Infra-
red (IR) spectra were obtained using a Frontier FT-IR
Perkin-Elmer spectrophotometer. 1H and 13C NMR spectra
were recorded on a Bruker AVANCE 400 FT-NMR spec-
trometer, operating at 400MHz (1H) and 100MHz (13C).
Electrospray mass spectra and electrospray ionization time-
of-flight mass spectrometry spectra were measured with a
Finnigan LC-Q and a Bruker micrOTOF-II mass spectro-
meter. Unless otherwise indicated, column chromatography
was carried out using Merck silica gel 60 (<0.063 mm) and
Pharmacia Sephadex LH-20. For thin layer chromatography
(TLC), Merck precoated silica gel 60 F254 plates were used.
Spots on TLC were detected under UV light and by
spraying with anisaldehyde-H2SO4 reagent followed by
heating.

Plant material

The stem bark of X. pierrei were collected from Sakaerat
Environmental Research Station, Nakorn Ratchasima pro-
vince, Thailand and the plant species was identified by Dr.
Piya Chalermglin, Thailand Institute of Scientific and
Technological Research, Bangkok, Thailand. The voucher
specimen (BKF 073765) is deposited at The Forest Her-
barium, Department of National Parks, Wildlife and Plant
Conservation, Chatuchak, Bangkok, Thailand.

Extraction and isolation

The air-dried stem bark of X. pierrei Hance (1.0 kg) was
pulverized and extracted successively with n-hexane,
EtOAc, and MeOH at room temperature, respectively. The
extracted solutions were filtered and evaporated under
reduced pressure at temperature 40–45 °C to give 10.74 g
from the hexane extract, 39.58 g from the EtOAc extract
and 30.35 g from the MeOH extract. The hexane and EtOAc
extracts showed significant cytotoxic activities and were
therefore investigated for active compounds. The hexane
extract (10.0 g) was fractionated by column chromato-
graphy, using a gradient solvent system of n-hexane, n-
hexane-EtOAc and EtOAc with increasing amounts of the
more polar solvent. The eluates were examined by TLC
and 5 groups of eluting fractions were obtained. Group 4
(1.61 g) was further fractionated by column chromato-
graphy, using an isocratic solvent system of n-hexane-
EtOAc (90:10), to give four fractions (fr. 4.1–4.4). Fraction
4.2 (735.3 mg) was separated by column chromatography

using by isocratic solvent system of n-hexane-EtOAc
(75:25) to yield polycarpol (1) as colorless crystals (657.5
mg). Fraction 4.3 (310.7 mg) was subjected to column
chromatography twice, using n-hexane-EtOAc (70:30) to
give (7R)-acetylmelodorinol (2) as white solid (120.5 mg),
and (7R)-melodorinol (3) as white solid (76.6 mg). The
absolute stereochemistry at C-7 was determined by the
modified Mosher’s method (Dale et al. 1969; Ohtani et al.
1991; Suksamrarn et al. 2008). The EtOAc extract (39.0 g)
was fractionated by column chromatography, using a gra-
dient solvent system of n-hexane, n-hexane-EtOAc, EtOAc,
EtOAc-MeOH, and MeOH with increasing amounts of the
more polar solvent. The eluates were examined by TLC and
eight groups of eluting fractions were obtained. Group 2
(3.37 g) was chromatographed three times, using n-hexane-
EtOAc (85:15), n-hexane-EtOAc (80:20), and n-hexane-
EtOAc (70:30) to give polycarpol (1) (285.0 mg) and (7R)-
acetylmelodorinol (2) (324.3 mg). Group 3 (1.62 g) was
subjected to column chromatography twice, using n-hex-
ane-EtOAc (90:10) as eluting solvent, followed by column
chromatography on Sephadex LH-20, eluting with MeOH
to yield eight fractions (fr. 3.1–3.8). Fractions 2 and 7 gave
pinocembrin (4) as white solid (264.6 mg) and dichamane-
tin (7) as white solid (66.2 mg), respectively. Fraction 3 was
chromatographed by isocratic elution with n-hexane-
EtOAc (90:10) to afford isochamanetin (5) as white solid
(90.2 mg). Fraction 4 was subjected to repeated column
chromatography, using n-hexane-EtOAc (90:10) as eluent,
to furnish chrysin (6) as white solid (164.5 mg). Group 5
(1.59 g) was chromatographed on Sephadex LH-20 eluting
with MeOH, followed by silica column chromatography
eluting with n-hexane-EtOAc (90:10) to yield (7R)-melo-
dorinol (3) (343.4 mg). Group 6 (1.03 g) was further frac-
tionated by column chromatography, using an isocratic
solvent system of n-hexane-EtOAc (65:30), to give melo-
dienone (8) as white amorphous solid (5.5 mg).

Polycarpol (1)

Colorless crystals (MeOH); mp 149.1 ˚C; [α]29D+ 66 (c
0.71, CHCl3); IR (KBr) νmax 3442, 2926, 2884, 1373, 1047,
1034, 987 cm−1; 1H NMR (CDCl3, 400MHz,): δ= 5.82
(1H, d, J= 5.9 Hz, H-7), 5.28 (1H, d, J= 5.5 Hz, H-11),
5.06 (1H, t, J= 7.0 Hz, H-24), 4.25 (1H, dd, J= 9.4, 5.2
Hz, H-15), 3.22 (1H, dd, J= 11.2, 4.3 Hz, H-3), 2.26 (2H,
d, J= 17.6 Hz, H-12), 1.98, 1.37 (2H, overlapping signal,
H-22), 1.97 (1H, overlapping signal, H-1), 1.92, 1.81 (2H,
overlapping signal, H-23), 1.70, 1.62 (2H, overlapping
signal, H-2), 1.69 (2H, overlapping signal, H-16), 1.66 (1H,
overlapping signal, H-17), 1.66 (3H, s, H-27), 1.56 (3H, s,
H-26), 1.41 (1H, ddd, J= 17.2, 13.1, 3.8 Hz, H-1), 1.33
(1H, m, H-20), 1.07 (1H, dd, J= 11.8, 3.5 Hz, H-5), 0.98
(3H, s, H-29), 0.95 (3H, s, H-18), 0.91 (3H, s, H-30), 0.86
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(3H, d, H-21), 0.85 (3H, s, H-28), 0.58 (3H, s, H-18); 13C
NMR (CDCl3, 100MHz,): δ= 146.0 (C-9), 140.8 (C-8),
121.2 (C-7), 116.0 (C-11), 78.9 (C-3), 74.7 (C-15), 51.9 (C-
14), 48.9 (C-17), 48.8 (C-5), 44.3 (C-13), 40.1 (C-16), 38.6
(C-4), 38.5 (C-12), 37.4 (C-10), 36.2 (C-22), 35.7 (C-1, C-
20), 27.7 (C-2), 22.8 (C-6, C-19), 18.3 (C-21), 15.8 (C-18);
ESI MS m/z 439.3 [M-H]−. The physical and spectral data
were in agreement with those reported in the literature (Da
Silva et al. 2012).

(7R)-acetylmelodorinol (2)

White solid; [α]29D- 16 (c 0.30, CHCl3); IR (KBr) νmax

2922, 1780, 1743, 1721, 1681, 1601, 1584, 1561, 1451,
1372, 1271, 1226, 1107, 1070, 1026, 940 cm−1; 1H NMR
(CDCl3, 400MHz,): δ= 8.00 (2H, d, J= 7.4 Hz, H-12, H-
16), 7.55 (1H, t, J= 7.4 Hz, H-14), 7.42 (2H, t, J= 7.4 Hz,
H-13, H-15), 7.35 (1H, d, J= 5.4 Hz, H-4), 6.25 (1H, d, J
= 5.4 Hz, H-3), 6.12 (1H, ddd, J= 8.0, 6.0, 4.1 Hz, H-7),
5.30 (1H, d, J= 8.0 Hz, H-6), 4.55 (1H, dd, J= 11.7, 4.1
Hz, H-8α), 4.49 (1H, dd, J= 11.7, 6.0 Hz, H-8β), 2.07 (3H,
s, H-18); 13C NMR (CDCl3, 100MHz,): δ= 169.7 (C-17),
168.3 (C-2), 165.9 (C-10), 150.6 (C-5), 143.2 (C-4), 133.2
(C-14), 129.6 (C-12, C-16), 129.4 (C-11), 128.4 (C-13, C-
15), 121.5 (C-3), 108.8 (C-6), 67.2 (C-7), 64.5 (C-8), 20.8
(C-18); ESI MS m/z 325.0 [M+Na]+. The physical and
spectral data were in agreement with those reported in the
literature (Lu et al. 1997).

(7R)-melodorinol (3)

White solid; [α]29D- 11 (c 0.30, CHCl3); IR (KBr) νmax

3333, 2947, 2835, 1650, 1449, 1113, 1016 cm−1; 1H NMR
(CDCl3, 400MHz,): δ= 8.01(2H, d, J= 7.4 Hz, H-12, H-
16), 7.54 (1H, t, J= 7.4 Hz, H-14), 7.41 (2H, t, J= 7.4 Hz,
H-13, H-15), 7.36 (1H, d, J= 5.4 Hz, H-4), 6.22 (1H, d, J
= 5.4 Hz, H-3), 5.38 (1H, d, J= 8.1 Hz, H-6), 5.15 (1H,
ddd, J= 10.0, 7.3, 4.2 Hz, H-7), 4.45 (1H, dd, J= 11.2, 4.2
Hz, H-8α), 4.43 (1H, dd, J= 11.2, 7.3 Hz, H-8β); 13C NMR
(CDCl3, 100MHz,): δ= 168.9 (C-2), 166.6 (C-10), 150.0
(C-5), 143.6 (C-4), 133.3 (C-14), 129.7 (C-12, C-16), 129.4
(C-11), 128.4 (C-13, C-15), 121.0 (C-3), 113.2 (C-6), 67.5
(C-7), 65.7 (C-8); ESI MS m/z 283.0 [M+Na]+. The phy-
sical and spectral data were in agreement with those
reported in the literature (Lu et al. 1997).

Pinocembrin (4)

White solid; [α]25D- 42 (c 0.31, CHCl3); IR (KBr) νmax

3332, 2944, 2833, 1637, 1453, 1342, 1266, 1216, 1162,
1023,734 cm−1; 1H NMR (DMSO-d6, 400MHz,): δ= 12.1
(1H, s, 5-OH), 11.0 (1H, s, 7-OH), 7.49 (2H, d, J= 7.2 Hz,
H-2′, H-6′), 7.39 (3H, m, H-3′, H-4′, H-5′), 5.92 (1H, s, H-

8), 5.89 (1H, s, H-6), 5.56 (1H, dd, J= 12.8, 3.2 Hz, H-2),
3.23 (1H, dd, J= 17.2, 12.8 Hz, H-3b), 2.77 (1H, dd, J=
17.2, 3.2 Hz, H-3a); 13C NMR (DMSO-d6, 100MHz,): δ=
196.1 (C-4), 166.8 (C-7), 163.6 (C-5), 162.9 (C-9), 138.8
(C-1′), 128.8 (C-3′, C-4′, C-5′), 126.8 (C-2′, C-6′), 102.0 (C-
10), 96.1 (C-6), 95.2 (C-8), 78.6 (C-2), 42.3 (C-3); ESI MS
m/z 257.2 [M+H]+. The physical and spectral data were in
agreement with those reported in the literature (Tuchinda
et al. 1991).

Isochamanetin (5)

White solid; [α]29D- 11 (c 1.05, CHCl3); IR (KBr) νmax

3293, 2942, 2833, 1635, 1488, 1454, 1341, 1297, 1249,
1153, 1021,755 cm−1; 1H NMR (DMSO-d6, 400MHz,): δ
= 12.4 (1H, s, 5-OH), 11.0 (1H, s, 7-OH), 9.4 (1H, s, 2′′
-OH), 7.51 (2H, d, J= 6.8 Hz, H-2′, H-6′), 7.42 (2H, m, H-
3′, H-5′), 7.38 (1H, m, H-4′), 6.93 (1H, ddd, J= 8.4, 7.6,
2.8 Hz, H-4′′), 6.76 (1H, d, J= 7.6 Hz, H-3′′), 6.60 (1H,
overlapping signal, H-6′′), 6.58 (1H, overlapping signal, H-
5′′), 6.07 (1H, s, H-8), 5.58 (1H, dd, J= 12.8, 3.0 Hz, H-2),
3.68 (1H, s, H–a), 3.26 (1H, dd, J= 17.2, 12.8Hz, H-3b),
2.77 (1H, dd, J= 17.2, 3.0 Hz, H-3a); 13C NMR (DMSO-
d6, 100MHz,): δ= 196.3 (C-4), 165.1 (C-7), 161.5 (C-5),
161.0 (C-9), 155.0 (C-2′′), 140.0 (C-1′), 128.8 (C-3′, C-4′,
C-5′), 127.7 (C-6′′), 126.5 (C-2′, C-6′, C-1′′, C-4′′), 118.9
(C-5′′), 114.6 (C-3′′), 106.2 (C-6), 101.8 (C-10), 94.7 (C-8),
78.6 (C-2), 42.4 (C-3), 21.3 (C-a); ESI MS m/z 723.5 [2M-
H]−. The physical and spectral data were in agreement with
those reported in the literature (Achenbach et al. 1997).

Chrysin (6)

White solid; IR (KBr) νmax 3332, 2943, 2832, 1649, 1613,
1576, 1554, 1497, 1448, 1354, 1167,1023 cm−1; 1H NMR
(DMSO-d6, 400MHz,): δ= 12.8 (1H, s, 5-OH), 10.9 (1H,
s, 7-OH), 8.05 (1H, d, J= 7.3, H-2′, H-6′), 7.57 (1H, m, H-
3′), 6.95 (1H, s, H-3), 6.51 (1H, s, H-8), 6.21 (1H, s, H-6);
13C NMR (DMSO-d6, 100MHz,): δ= 199.4 (C-6), 194.5
(C-8), 182.3 (C-4), 164.8 (C-7), 163.6 (C-2), 161.9 (C-5),
157.9 (C-9), 132.4 (C-4′), 131.1 (C-1′), 129.5 (C-3′, C-5′),
126.8 (C-2′, C-6′), 105.6 (C-3), 104.4 (C-10); ESI MS m/z
255.2 [M+H]+. The physical and spectral data were in
agreement with those reported in the literature (Tuchinda
et al. 1991).

Dichamanetin (7)

White solid; [α]29D- 4 (c 0.82, CHCl3); IR (KBr) νmax 3295,
2939, 2833, 1629, 1488, 1455, 1377, 1341, 1286, 1215,
1021,753 cm−1; 1H NMR (DMSO-d6, 400MHz,): δ= 12.5
(1H, s, 5-OH), 7.32–7.41 (5H, m, H-2′-H-6′), 6.96 (2H,
overlapping signal, H-4′′, H-4′′′), 6.77 (2H, overlapping
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signal, H-3′′, H- 3′′′), 6.75 (1H, overlapping signal, H-6′′′),
6.74 (1H, overlapping signal, H-6′′), 6.65 (1H, overlapping
signal, H-5′′′), 6.63 (1H, overlapping signal, H-5′′), 6.07
(1H, s, H-8), 5.57 (1H, dd, J= 12.8, 3.0 Hz, H-2), 3.78 (1H,
br s, H-b), 3.77 (1H, s, H-a), 3.19 (1H, dd, J= 17.2, 12.4
Hz, H-3b), 2.86 (1H, dd, J= 17.2, 3.0 Hz, H-3a); 13C NMR
(DMSO-d6, 100MHz,): δ= 196.8 (C-4), 162.7 (C-7), 159.6
(C-5), 158.4 (C-9), 154.5 (C-2′′, C-2′′′), 139.1 (C-1′), 128.6
(C-2′, C-6′), 128.5 (C-6′′, C-6′′′), 128.4 (C-1′′), 128.3 (C-4′′,
C-4′′′), 126.5 (C-4′), 126.3 (C-3′, C-5′), 119.1 (C-5′′, C-5′′′),
114.6 (C-3′′, C-3′′′), 106.6 (C-6), 106.0 (C–8), 102.1 (C-
10), 78.1 (C-2), 42.1 (C-3), 22.3 (C-b), 21.7 (C-a); ESI MS
m/z 467.7 [M-H]−. The physical and spectral data were in
agreement with those reported in the literature (Achenbach
et al. 1997).

Melodienone (8)

White solid; IR (KBr) νmax 3345, 2923, 2852, 1723, 1671,
1451, 1270, 1116, 1025 cm−1; 1H NMR (CDCl3, 400
MHz,): δ= 8.07 (2H, d, J= 7.3 Hz, H-12, H-16), 7.59 (1H,
t, J= 7.4 Hz, H-14), 7.46 (2H, t, J= 7.4 Hz, H-13, H-15),
7.36 (1H, d, J= 15.7 Hz, H-4), 7.07 (1H, dt, J= 15.9, 4.2
Hz, H-7), 6.75 (1H, d, J= 15.7 Hz, H-3), 6.59 (1H, dt, J=
15.9, 1.7 Hz, H-6), 5.06 (1H, br dd, J= 4.2, 1.7 Hz, H-8β),
5.05 (1H, br dd, J= 4.2, 1.7 Hz, H-8α), 3.80 (3H, s, H-1);
13C NMR (CDCl3, 100MHz,): δ= 187.8 (C-5), 165.8 (C-
2,10), 142.3 (C-7), 137.7 (C-4), 133.4 (C-14), 131.4 (C-3),
129.6 (C-11),129.3 (C-12, C-16), 128.6 (C-6), 128.5 (C-13,
C-15), 63.0 (C-8), 52.3 (C-1); ESI MS m/z 297.0 [M+Na]+.
The physical and spectral data were in agreement with those
reported in the literature (Jung et al. 1990).

Determination of the stereochemistry at the asymmetric
carbon of compound 3

In order to determine the stereochemistry at the asymmetric
carbon of compound 3, the modified Mosher’s method was
performed. Briefly, a solution of the compound 3 (2.1 mg)
in dry pyridine (100 μL) was added (R)-(−)-MTPA chloride
(15 μL) at 10 °C and the mixture was stirred for 5 min.
Stirring continued at ambient temperature and the comple-
tion of reaction was monitored by TLC. Two milliliters of
n-hexane was added to the reaction mixture and the hexane-
soluble part was subjected to flash column chromatography
using n-hexane and 15% EtOAc/n-hexane as eluting
solvent to give the (S)-MTPA ester 3x (3.2 mg). The pro-
cedure was repeated, but using (S)-(+)-MTPA chloride in
place of (R)-(−)-MTPA chloride, to yield the (R)-MTPA
ester 3y (3.5 mg). The 1H NMR spectra of 3x and 3y were
recorded in CDCl3; the chemical shift differences of the
proton resonances between the (S)-MTPA ester 3x and the

(R)-MTPA ester 3y were calculated and the results are
summarized in Fig. 1.

Cytotoxic activity

The cytotoxicity against human small cell lung cancer
(NCI-H187) cells was evaluated by resazurin microplate
assay (O’Brien et al. 2000). Briefly, cells at a
logarithmic growth phase were harvested and diluted to
6.6× 104 cells/ml in fresh medium. Successively, 5 μl of
test compounds, diluted in 5% dimethyl sulfoxide (DMSO)
and 45 μl of cells suspension were added to 384-well plates.
The plates were incubated in 5% CO2 incubator at 37 °C.
After incubation for 5 days, 12.5 μl of 62.5 μg/ml resazurin
solution was added to each well and the plates were then
incubated at 37 °C for 4 h. Fluorescence signal was mea-
sured using SpectraMax M5 multi-detection microplate
reader at the excitation and emission wavelengths of 530
and 590 nm, respectively. IC50 values were calculated from
dose response curves, using six concentrations of three-fold
serially diluted test compounds, by the SOFTMax Pro
software. Ellipticine and 0.5% DMSO were used as positive
and negative controls, respectively.

The cytotoxicity against African green monkey kidney
(Vero) cell line was evaluated by the green fluorescent
protein detection (Hunt et al. 1999). Briefly, 45 μl of cell
suspension at 3.3× 104 cells/ml were added to each well of
384-well plates containing 5 μl of test compounds pre-
viously diluted in 0.5% DMSO. The plates were incubated
with 5% CO2 in 37 °C incubator for 4 days. Fluorescence
signals were measured using SpectraMax M5 multi-
detection microplate reader in the bottom-reading mode
with excitation and emission wavelengths of 485 and 535
nm. The signal on day 4 was subtracted by the signal on day
0, as background signal. IC50 values were calculated from
dose response curves. Ellipticine and 0.5% DMSO were
used as positive and negative controls, respectively.

Results and discussion

From bioassay-guided cytotoxicity evaluations against
human small cell lung cancer (NCI-H187) cells, column
chromatography of the active n-hexane and EtOAc extracts
from stem bark of X. pierrei has led to the isolation of one
triterpene, polycarpol (1), three heptenes, (7R)-acet-
ylmelodorinol (2), (7R)-melodorinol (3), and melodienone
(8) and four flavonoids, pinocembrin (4), isochamanetin (5),
chrysin (6), and dichamanetin (7). These compounds were
isolated for the first time from this plant species (Fig. 1).
The structures of the isolated compounds were identified by
comparison of the spectroscopic and physical data with the
literature values. The cytotoxic activities of the isolated
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compounds against the NCI-H187 and Vero cells are
summarized in Table 1. The results indicated that com-
pound 2 presented high cytotoxic activity against the NCI-
H187 cell with an IC50 value of 6.66 μM, followed by
compounds 8 (IC50 13.65 μM) and 7 (IC50 17.26 μM).

Compounds 5 and 1 exhibited weak activities with IC50

values of 40.28 and 45.46 μM, respectively, whereas com-
pounds 3, 4, and 6 were inactive. The cytotoxic activity of
compounds 2 was 2.3-fold higher than that of the reference
anticancer drug, ellipticine (IC50 15.47 μM) whereas that
of compound 8 was slightly more active than the
reference drug. Compound 8 was very toxic to Vero cells
(IC50 5.62 µM), whereas compound 2 was much less cyto-
toxic (IC50 59.14 µM). The heptene 2 thus showed high
selectivity index of 8.89, which is 59-fold greater than that
of ellipticine. On comparing the activity of compounds 2
and 3, it can be suggested that the acetyl group of com-
pound 2 at 7-position should play important role in med-
iating cytotoxic activity whereas the presence of a free
hydroxyl group seemed to decrease cytotoxic activity of
compound 3. The sharp decrease in cytotoxic activity of
compound 3 indicated that the 7-position is very sensitive to
change in bioactivity. These results suggest that compound
2 may be used as a potential lead molecule for anticancer
therapeutic development. Furthermore, in comparing the
activity of compounds 2, 3 with that of compound 8, it can
be concluded that the lactone ring exerted cytotoxic effect
of the compound. The absence of a lactone ring seemed to
decrease cytotoxic activity of compound 8. In addition, to

Fig. 1 Structures of compounds 1–8 isolated from stem bark of X. pierrei Hance

Table 1 Cytotoxic activities of compounds 1–8 isolated from stem
bark of X. pierrei Hance

Compounds Cytotoxicity (IC50, μM)

NCI-H187 Vero SIa

Polycarpol (1) 45.46 12.53 0.28

(7R)-Acetylmelodorinol (2) 6.66 59.14 8.89

(7R)-Melodorinol (3) inactiveb 7.27 –

Pinocembrin (4) inactiveb inactiveb –

Isochamanetin (5) 40.28 19.31 0.48

Chrysin (6) inactiveb inactiveb –

Dichamanetin (7) 17.26 22.29 1.29

Melodienone (8) 13.65 5.62 0.41

Ellipticinec 15.47 2.28 0.15

a Selectivity index= cytotoxicity to Vero cells/NCI-H187 cells
b Inactive at 50 μg/ml
c Ellipticine was used as a positive control
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the best of our knowledge, this is the first report of phyto-
chemical investigation on X. pierrei.

Conclusion

In this study, we have reported the first phytochemical
investigation of the stem bark of X. pierrei Hance. The
isolated compounds were one triterpene, polycarpol (1),
three heptenes, (7R)-acetylmelodorinol (2), (7R)-melodor-
inol (3), and melodienone (8), and four flavonoids, pino-
cembrin (4), isochamanetin (5), chrysin (6), and
dichamanetin (7). The structures of all compounds were
characterized by spectroscopic techniques and by compar-
ison with the literature values. Compound 2 displayed
potent cytotoxic activity against NCI-H187 cells with an
IC50 value of 6.66 μM and showed high selectivity index of
8.89, which is 59-fold greater than cytotoxic activity of
ellipticine. Compound 2 should be selected as a potential
lead molecule for anticancer drug development.
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